

Sources of air pollution in cities, and benefits of improving air quality in 1000 European cities

Mark Nieuwenhuijsen

Barcelona Institute for Global Health

Urban Burden of Disease Estimation for Policy Making

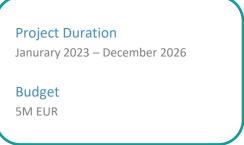
This project has received funding from the European Union's, Horizon Europe Framework Programme (HORIZON) under GA No 101094639 - THE URBAN BURDEN OF DISEASE ESTIMATION FOR POLICY MAKING (UBDPolicy)

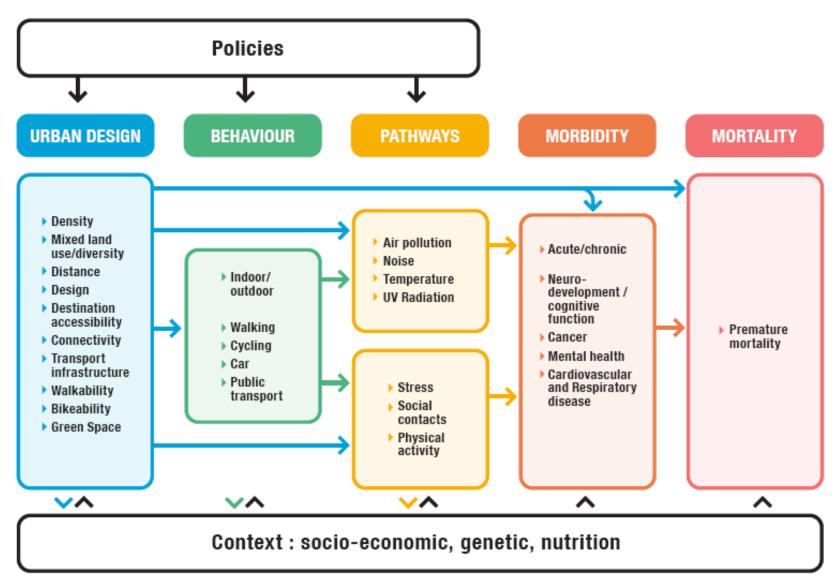
Assessing Health Impacts, Costs, and Benefits of:

UBDPolicy aims to:

- Improve the estimation of health and well-being impacts and socio-economic costs and/or benefits of major urban environmental stressors
- Advance methodological approaches
- Provide good practices for urban areas to help strengthen evidence-based policy-making at city, national, and EU levels
- Effectively contribute to the development of new and existing urban planning, transport planning, and environmental policies, plans, and initiatives.

https://ubdpolicy.eu/

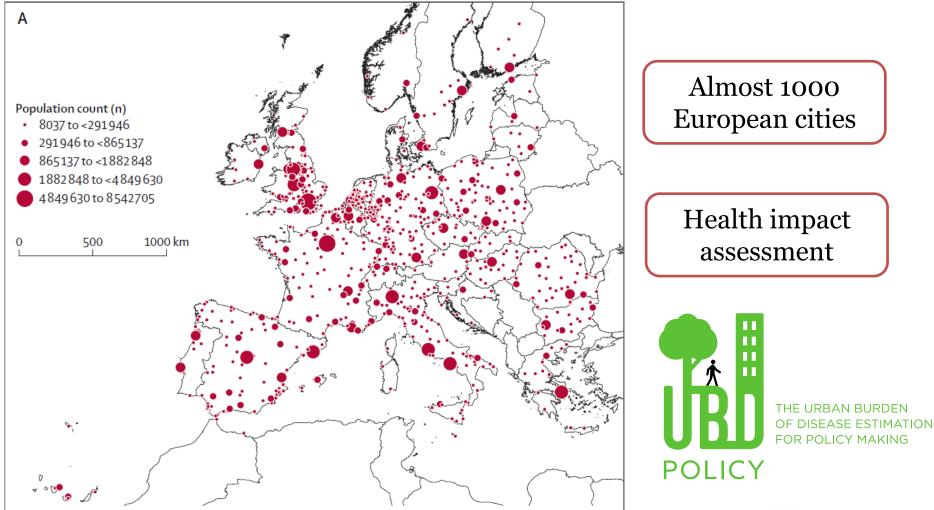

Urban Burden of Disease Estimation for Policy Making



This project has received funding from the European Union's, Horizon Europe Framework Programme (HORIZON) under GA No 101094639 - THE URBAN BURDEN OF DISEASE ESTIMATION FOR POLICY MAKING (UBDPolicy)

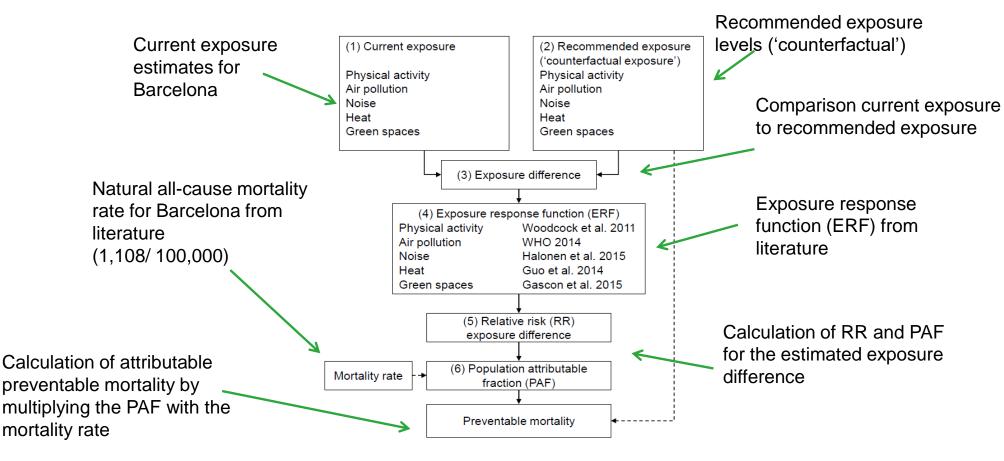
Work Packages and Partners

		(*Project coordinator)
ISGIODAI Barcelona Institute for Global Health	WP5: Health and socio-economic assessment	WP7: Management
MRC Epidemiology UNIVERSITY OF CAMBRIDGE	WP1: New methods and health analyses	
Universiteit Utrecht	WP2: New methods and health and well-being indicators	
Linnæus University 🍍	WP3: Tools and guidelines for cost- benefit analyses	
Swiss TPH Swiss Topical and Public Health Institute	WP4: Environmental stressors estimates for cities	
HEAL HEALTH AND HEALTH AND HEALTH AND HEALTH AND	WP6: Consultation and knowledge translation	



Nieuwenhuijsen 2016 and 2018

Holistic and systematic approach



European cities

Urban and TranspOrt Planning Health Impact Assessment tool (UTOPHIA)

Mueller et al EHP 2017; 125: 89-96

124729 (83332-166535)

79 435 (0-215 165)

Lowest level in any city

Table: Number of premature deaths that could be prevented in European cities if PM₂₅ and nitrogen dioxide concentrations met guidelines or lowest levels

Khomenko et al 2021

. 10.10 · 10.00.00 · ------10 10 10 10 10 10.10.00 Top 6 -------.... -----......... -----**EUROPEAN CITIES** WITH THE HIGHEST -----0 **MORTALITY DUE TO** PM 2.5 N O 2 0 **AIR POLUTION** ------------------..... BRESCIA MADRID (Metropolitan area) 10 10 10 Italy Spain **ANTWERP** BERGAMO 10.00 10.10 2 2 10 10 Italy Belgium KARVINÁ TURIN 3 3 **Czech Republic** Italy VICENZA PARIS (Metropolitan area) 4 4 Italy France SILESIAN METROPOLIS 5 5 MILAN (Metropolitan area) Poland Italy **OSTRAVA BARCELONA** (Metropolitan area) 6 6 Czech Republic Spain ISGlobal_ **#ISGlobalRanking** - RankingOfCities

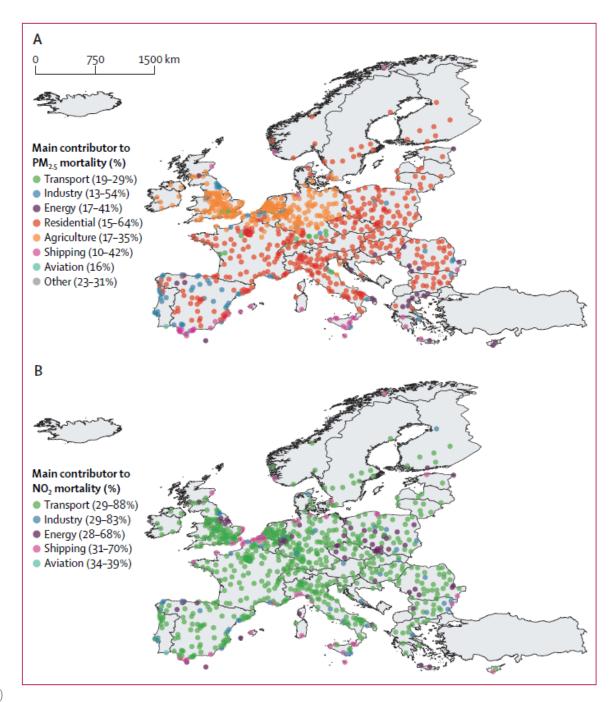
Khomenko et al 2021

ISGlobal

https://isglobalranking.org/

Sectoral contributions to $PM_{2.5}$ mortality

- <u>Residential</u> (22.7%)
- <u>Agriculture</u> (18%)
- Industry (13.8%)
- Transport (13.5%)
 - Energy (10%)
 - Natural (8.8%)
 - Shipping (5.5%)


Sectoral contributions to NO_2 mortality

- <u>Transport</u> (48.5%)
 - Industry (15%)
 - Energy (14.7%)
- Residential (10.3%)
 - Shipping (9.7%)

Results

Transport (for NO_2), **agriculture** and **residential** (for $PM_{2.5}$) sectors are the main contributors to air pollution related mortality.

Spatial contributions to PM_{2.5} mortality

- City (**13.5%**)
- Country (46.8%)
- Transboundary (27%)

City contributions at **22.3%** in cities of largest area (> 300 km²) and at **29.9%** among European capitals. Spatial contributions to NO₂ mortality

- City (**34.4%**)
- Country (48.9%)
- Transboundary (16.7%)

City contributions at **52.2%** in cities of largest area (> 300 km²) and at **62.7%** among European capitals.

https://isglobalranking.org/

Background Objectives Methods

Results I II III IV

Discussion

Conclusions

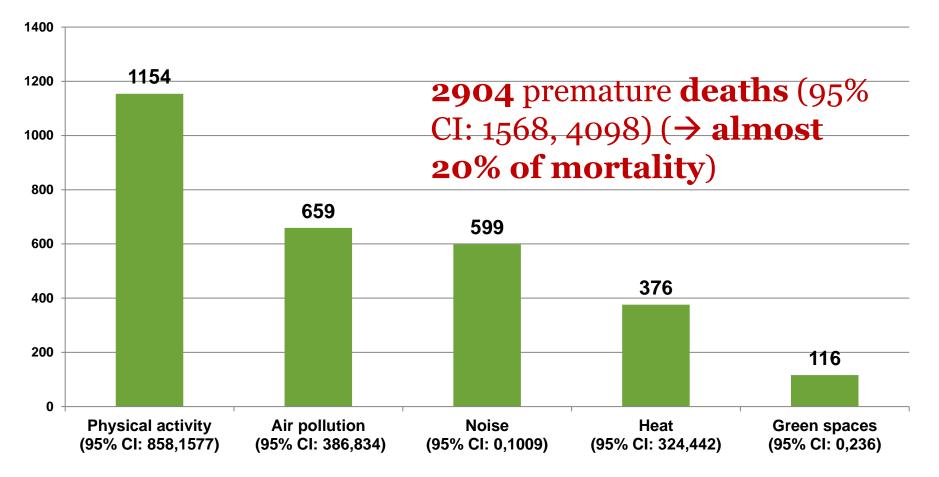
Implications for policy

Air pollution

More stringent EU legislation Local air quality plans, coordinated with actions at national and international levels

Local actions (NO₂)

- Low emission zones
- Changes in urban design
- Urban greening
- Accessibility and proximity
- Public and active transport
- Speed limits
- Reductions in motorized traffic


Intersectoral and interregional actions $(PM_{2.5})$

- Fuel regulations
- Stove replacement schemes
- Fuel burn bans
- Building insulation
- Clean and renewable energy sources
- Manure management and fertilizer use
- Emission controls (transport, industry, shipping)
- Industrial materials, fuels and processes optimization
- Complete phasing out of coal and fossil fuel burning

2904 premature deaths (20%) annually in Barcelona due to suboptimal urban and transport planning Mueller et al EHP 2017; 125: 89-96

DEATHS DUE TO POOR URBAN AND TRANSPORT PLANNING BARCELONA

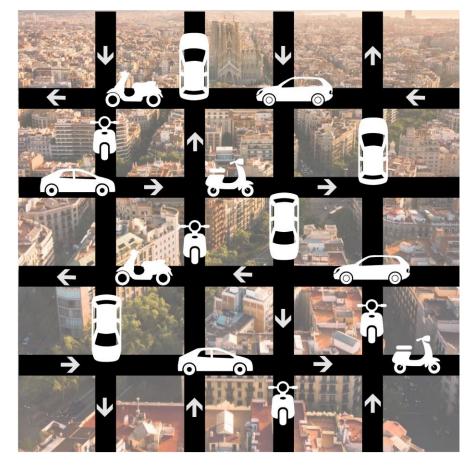
Traffic injury deaths 30

Mueller et al EHP 2017; 125: 89-96

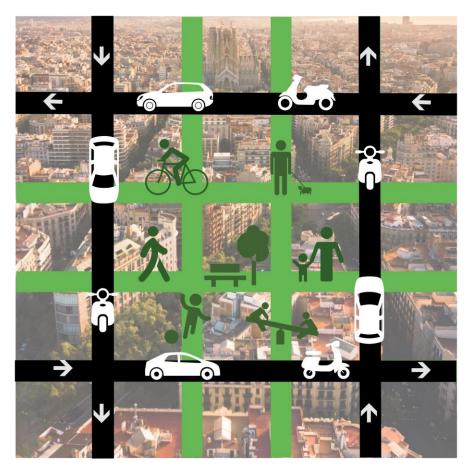
Pereira Barboza et al 2021

ISGlobal

https://isglobalranking.org/



NEW URBAN MODELS


c) 15-minute city, Paris

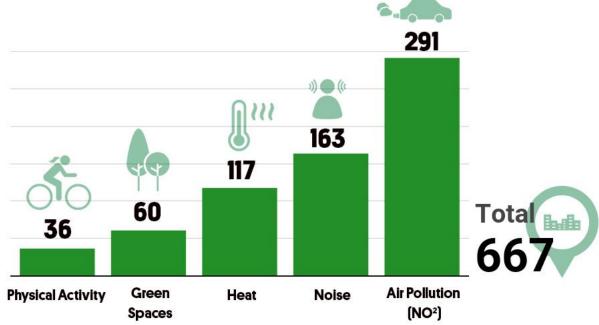
d) Car free Vauban, Freiburg, Germany

BARCELONA SUPER BLOCK MODEL

Baseline situation

Superblocks model

Barcelona Superblock San Antoni


Before

After

BARCELONA SUPER BLOCKS

- 19.2% car reduction
- 11.5 ug/m3 (24.3%) NO2 reduction
- 2.9 dB noise reduction
- 3 fold increase green space (6.5% to 19.6%)
- 20% Surface temperature reduction

Annual Premature Deaths that the "Superblocks" Model Could Avoid in Barcelona

Source: Mueller et all. Changing the urban design of cities for health: the Superblock model. *Environment International*. 2019

ISGlobal

Mueller et al 2019, Env Int

Multisectorial approach

Multi sectorial and systemic approaches are needed to address current problems and find solutions

International Societ for Urban Health

Courtesy of Jo Ivey Boufford

Seoul, Korea

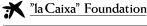
Greening cities

https://ubdpolicy.eu/

This project has received funding from the European Union's Horizon Europe research and innovation programme under Grant Agreement No 101094639

https://ubdpolicy.eu/

mark.nieuwenhuijsen@isglobal.org



Big thanks to the whole team!

Questions?

www.isglobal.org

A partnership of:

