Technical Evaluation of Hunutlu Power Plant and Air Pollution in Adana

MAY 2020

The International Agency for Research on Cancer (IARC), the specialised cancer agency of the World Health Organization (WHO), considers that ambient air pollution is carcinogenic to humans (Group-1); causes lung cancer and increases the risk of bladder cancer. Indoor and outdoor air pollution is responsible for 7 million premature deaths around the world on an annual basis. Ambient air pollution causes approximately 37,000 deaths, 2,300 lower respiratory infections, 17,000 ischemic heart diseases, 5,000 strokes and 4,900 trachea, bronchus and lung cancer per year in Turkey.

The Hunutlu Power Plant is currently being constructed in Yumurtalik district of Adana province, Turkey. This briefing examines air quality data in Adana and also the air pollution monitoring and modeling in the Environmental Impact Assessment (EIA) report of the Hunutlu Power Plant. Additionally, the impact of air pollutant reductions in Adana on the potential prevention of mortalities are examined under three different scenarios.

STATE OF AIR QUALITY IN ADANA

Residents of Adana are exposed to polluted air throughout the year: The PM$_{10}$ concentrations monitored by the two stations in Adana city center (Adana Meteoroloji and Adana Valilik) are twice above Turkey’s and EU’s national limits and four times above the World Health Organization guideline values.

<table>
<thead>
<tr>
<th>Table1: 2019 Annual PM$_{10}$ Average and Annual Limit Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turkey and EU’s Limits</td>
</tr>
<tr>
<td>40µg/m3</td>
</tr>
</tbody>
</table>

According to the “Air Pollution Report”, published by the Chamber of Environmental Engineers in 2019, Adana is one of the cities with the largest exceedances of annual PM$_{10}$ national pollution limits. Additionally, the PM$_{10}$ concentrations measured in “Adana Valilik” station exceeded the PM$_{10}$ daily limit of 50µg/m3 on 236 days of 2019. But according to Turkey’s regulations, the daily limit of 50µg/m3 must not be exceeded more than 35 days in a year.

PM$_{2.5}$ concentrations and polluted areas are not being measured: Concentrations of PM$_{2.5}$, which is used as the primary indicator to calculate the health impacts of air pollution, are not being measured in any of the four air quality monitoring stations in Adana.

Only two out of four monitoring stations are located at the city center, and air pollution is not being measured at all in areas where large pollutants such as the Organized Industry Zone and the Isken Sugözü Power Plant are located in.

As is the case throughout Turkey, stacks emissions of power plants are not being disclosed for the Adana region, in contrast to publicly available information on large combustion plants on the unit scale in the member states of the European Union (with annual reports). Regular reporting and disclosure obligations provide an opportunity to estimate cross-border pollution and cumulative impact.

Map 1: Air Quality Measurement Stations and Coal Power Plants in Adana

3 European Pollution Release and Transfer Register, https://prtr.eea.europa.eu/#/areaoverview
TWOTHOUSAND DEATHS COULD HAVE BEEN PREVENTED IN ADANA

The Health and Environment Alliance (HEAL) compiled PM$_{10}$ emissions data from air pollution monitoring stations which are coordinated by the Ministry of Environment and Urbanization of Turkey in addition to the population and mortality statistics. We further estimated attributable cases to PM pollution in Adana for 2019 yearunder three different scenarios by using World Health Organization’s (WHO) AirQ+ software. The mortality estimate that is calculated by the AirQ+ software predicts potential mortality on the basis of exceeding PM$_{2.5}$ levels over 10 μg/m3 which is WHO’s guideline value for annual average. That means, our analysis provides an estimate of prevented mortality due to eliminating PM$_{2.5}$ air pollutant emissions.

According to HEAL calculations, the average mortality due toambient air pollution is estimated as 2,072 among the 9,485 deaths (excluding accidents/external injuries) over the age of 30 in Adana in 2019. In other words, the death of 1 out of 5 people could be prevented in 2019, if air pollution emissions in Adana was kept below the WHO’s guideline values.

Methodology:

Step 1: Evaluation of Air Quality Data
In order to determine the health impacts of air pollution, it is necessary to monitor the PM$_{2.5}$ pollutant concentrations. However, there is a need to convert the PM$_{10}$ pollutant concentrations to PM$_{2.5}$ as a starting pointsince the PM$_{2.5}$ pollutant is not being measured at any of the four monitoring stations in Adana. A method for this is to use thenational conversion factor of 0.67 that is set by the World Health Organization for Turkey. However, this conversion factor is based on the 2014 figures where there was no measurement on PM$_{2.5}$ in Turkey. For this reason, the coefficient of 0.75 is used as an average of conversion factors of Gebze and Kesan cities (0.7771 and 0.721 respectively) where both PM$_{10}$ and PM$_{2.5}$ concentrations are measured and the locations show similar characteristics to Adana in terms of ecological characteristicsof a bay and existence of heavy industries. According to 0.75 coefficient factor, the average annual PM$_{2.5}$ emission concentration that are measured at two stations at the citycenter of Adana would be 51μg/m3. On the other hand, the annual PM$_{2.5}$ emission intensity that is measured at four stations across Adana would be 32μg/m3. Since the population density of the city center and its districts are different, three different scenarios have been conducted within the scope of this analysis.

Step 2: Determining the Method
The AirQ+ software of the World Health Organization is used for this analysis. All calculations by AirQ+ are based on methodologies and dose-response functions that are developed in epidemiological studies. The dose-response functions used in the software are based on a systematic review and meta-analysis of existing studies. The AirQ+ software assumes non-external mortality risk over 30 years (relative risk coefficient) as 1.062 (95% confidence interval: 1.041-1.084) in case the PM$_{2.5}$ value in outdoor air exceeds 10μg/m3.

The mortality figures that are estimated by the software provides an estimated mortality number when the PM$_{2.5}$ level exceed 10μg/m3, in other words “potential prevented mortality by reducing the PM pollution.”

Step 3: Evaluation of Population and Health Statistics
Within the scope of the study, the following data is used:

- Mortality data of people over 30 years-old (10,031 deaths in total, 9,485 deaths excluding accidents/external injuries) was retrieved from TURKSTAT’s “Number of Deaths by Place of Residence” data in 2018. The data is provided on a provincial scale, district level data is not available.
- The data on total population of Adana (2,220,125 in 2018 and 2,237,940 in 2019) was retrieved from the “Address Based Registration System” of TURKSTAT at provincial and district levels. In order to ensure consistency with the mortality data, 2018 data was used.
- The population data for the people over the age of 30 (1,346,767 people), was retrieved from the “Address Based Registration System” of TURKSTAT for 2018 at provincial and district scales.
- The data on mortality due to external reasons is retrieved from TURKSTAT’s 2018 data on “Distribution of selected causes of mortality by residency” (5.44% of total mortality). This data is provided on a provincial scale only as well, district level data is not available.

Table 2: Average Annual PM$_{10}$ and PM$_{2.5}$ Concentrations In 2019

<table>
<thead>
<tr>
<th>Station</th>
<th>Measured PM$_{10}$</th>
<th>Estimated PM$_{10}$</th>
<th>Measured PM$_{2.5}$</th>
<th>Estimated PM$_{2.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meteorol Station</td>
<td>82µg/m3</td>
<td>62µg/m3</td>
<td>52µg/m3</td>
<td>40µg/m3</td>
</tr>
<tr>
<td>Valilik Station</td>
<td>52µg/m3</td>
<td>52µg/m3</td>
<td>20µg/m3</td>
<td>15 µg/m3</td>
</tr>
<tr>
<td>Catalant Station</td>
<td>11µg/m3</td>
<td>11µg/m3</td>
<td>14µg/m3</td>
<td>11µg/m3</td>
</tr>
<tr>
<td>Doğankent Station</td>
<td>15 µg/m3</td>
<td>15 µg/m3</td>
<td>15 µg/m3</td>
<td>11 µg/m3</td>
</tr>
</tbody>
</table>

4. Scenarios and Limitations

The AirQ+ software is based on the dose-response function. The dose function is the amount or density of different pollutants, whereas the response function is the size of the population that is impacted by pollution and the disease phenomenon. In our method, the dose function is based on the annual average PM$_{2.5}$ concentration and the response function is based on the rate of mortality (incidence) of population over 30 years old.

Four PM concentration measurement stations are located in Adana. As shown in Map1, two of these stations (Adana-Meteoroloji and Adana-Valilik) are located at the highly dense city center, whereas the other two (Çatalan and Doğankent) are located next to the villages and neighborhoods with low population density. However, there is no measurement in the highly polluted İskenderun Bay, where heavy industry is located—as the EIA report of Hunutlu plant monitors and proves the polluted air in the Bay. Therefore, only the two stations at the city center are reasonable to be included in our calculations. However, to ensure full transparency and show the extent of air pollution under different response (population) functions, three scenarios are provided:

- **Scenario 1**: 2019 PM$_{2.5}$ density (51μg/m3) in Adana center (Adana-Meteoroloji and Adana-Valilik stations only) and the total population of Adana center and districts (2,220,125 people, population over 30 years is 1,346,767 people).
- **Scenario 2**: 2019 PM$_{2.5}$ density (51μg/m3) in Adana center (Adana-Meteoroloji and Adana-Valilik stations only) and population of Adana center (Çukurova, Sarıçam, Seyhan and Yüreğir districts) (1,747,567 people, population over 30 years is 1,049,187 people).
- **Scenario 3**: 2019 PM$_{2.5}$ density (32μg/m3) of all four stations in Adana center and districts and total population of Adana center and districts (2,220,125 people, population over 30 years is 1,346,767 people).

Mortality incidence (30+ years adult) is fixed as 704 per 100,000 for all scenarios based on the national level statistics retrieved from TURKSTAT data.

5. Conclusion

Three different scenarios are developed based on different dose and response functions. Evaluation of the results shows the devastating findings on mortality rates attributed to air pollution under any scenario.

As stated previously, air quality is better in two locations where population density is lower; on the other hand, the air quality is not monitored at all in İskenderun bay where heavy industry is located. Considering this “balance” factor and the same proportion results under Scenario 1 and Scenario 2, it can be stated that Scenario 1 reflects the most accurate estimations.

To conclude, the average attributable mortality cases due to PM pollution was estimated as 2,072 among the 9,485 deaths (excluding accidents/external injuries) over the age of 30 in Adana in 2019. The mortality proportion attributed to air pollution is 21.9% of the total mortality. Based on different risk confidence intervals, the calculations show that the number of deaths related to air pollution is estimated between 1,408 and 2,644 in 2019. Based on this result, it is safe to state that “the death of 1 out of 5 people could have been prevented if the air pollution was reduced.”

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Estimated Number of Attributable Mortality</th>
<th>Cases (Central)</th>
<th>Cases (Upper)</th>
<th>Cases (Lower)</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
<td>2,072</td>
<td>2,644</td>
<td>1,408</td>
<td>21.9%</td>
<td></td>
</tr>
<tr>
<td>Scenario 2</td>
<td>1,614</td>
<td>2,060</td>
<td>1,097</td>
<td>21.9%</td>
<td></td>
</tr>
<tr>
<td>Scenario 3</td>
<td>1,175</td>
<td>1,525</td>
<td>784</td>
<td>12.4%</td>
<td></td>
</tr>
</tbody>
</table>

THE HUNUTLU POWER PLANT AND AIR QUALITY

Air quality is already poor at the project site of the Hunutlu Power Plant: The EIA report of Hunutlu Power of July 2013 includes PM$_{10}$ pollution monitoring at two locations. Emission values at both locations exceed the limit values of Turkey’s “Industrial Air Pollution Control Directive” which is updated to protect public health and comply with the EU acquis after 2014.

<table>
<thead>
<tr>
<th>PM$_{10}$ Monitoring in Project Site</th>
<th>Industrial Air Pollution Control Directive (2013)</th>
<th>Industrial Air Pollution Control Directive (2019 and beyond)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st location</td>
<td>83 µg/m3</td>
<td>100 µg/m3</td>
</tr>
<tr>
<td>2nd location</td>
<td>50µg/m3</td>
<td></td>
</tr>
</tbody>
</table>

These results reveal the alarming state of pollution in the İskenderun Bay once again even in the absence of continuous air quality monitoring stations and lack of disclosure of plant by plant pollutant emissions.

Cumulative impacts for all İskenderun Bays should be modeled: Air quality modeling is conducted within a radius of 9 km of Hunutlu power plant where several settlements and Sugözü Power Plant (bird fly distance 1.8 km) are considered. However, Atlas Power Plant (bird fly distance 33 km), Tufanbeyli power plant and several heavy industry facilities in İskenderun Bay have not been considered in the air quality modeling, thus the cumulative pollution assessment had been conducted superficially.
CONCLUSION AND DEMANDS

Despite all the challenges in health data and lack of research on the link between public health and environmental pollution in Adana and in Iskenderun Bay⁵, worldwide accepted scientific evidence clearly shows the negative impacts of environmental pollution, especially air pollution, on human health.

- **Air quality standards must be binding**: Ambient air pollution in Adana exceeds both national and international limit values. However, these values were set to protect public health, we demand limit values to be legally binding.

- **Emission data should be disclosed**: Plant by plant pollution data of large combustion plants should be disclosed. Continuous Emission Measurement System of Ministry of Environment and Urbanization should be publicly accessible.

- **Health impacts should be assessed**: Health Impact Assessment (HIA) composes of a set of methodologies, methods and tools that systematically evaluates potential impacts of a policy, plan, program or a project, in terms of public health and distribution of these impacts within the society⁶. According the WHO’s estimations effective environmental and health interventions in Europe can reduce total mortality rates by almost 10%. Considering its location and structure, a HIA should be conducted for the Hunutlu Power Plant.

- **The EIA report and generation license for the Hunutlu Power Plant should be cancelled**: Hunutlu Coal Power Plant started construction without a health impact assessment and with an EIA report that refers to outdated air quality limits. Moreover, engagement to prevent new coal plants has a long history in the region, which has been neglected; for instance, in 2019 local and national NGOs in Turkey repeated their demand for cancellation of the plant based on its negative impact on the marine ecosystem and marine turtles⁷.

NOTES

1 We would like to thank Dr Çiğdem Çağlayan and Dr Nilay Etiler for their contribution on the technical evaluation and calculation section, Dr. Sadun Bölükbaşı and Atty. Ismail Hakkı Atal for their contribution on the section on Adana and Iskenderun Bay and to 350.org, TEMA Foundation, YUVA Association, CAN-Europe and WWF Turkey for their editorial support to the briefing.

CONTACT

Funda Gacal
Senior Consultant on Energy and Health in Turkey
Health and Environment Alliance, HEAL
E-mail: funda@env-health.org
Tel: +32 2 234 36 40

The Health and Environment Alliance (HEAL) is a leading European not-for-profit organisation addressing how the environment affects health in the European Union (EU) and at the global level. HEAL works to shape laws and policies that promote planetary and human health and protect those most affected by pollution and raise awareness on the benefits of environmental action for health.

HEAL’s over 80 member organisations include international, European, national and local groups of health professionals, not-for-profit health insurers, patients, citizens, women, youth, and environmental experts representing over 200 million people across the 53 countries of the WHO European Region.

As an alliance, HEAL brings independent and expert evidence from the health community to EU and global decision-making processes to inspire disease prevention and to promote a toxic-free, low-carbon, fair and healthy future.

HEAL’s EU Transparency Register Number: 00723343929-96

⁵ HEAL, 2016, Toolkit: Coal power generation and health in Iskenderun Bay

⁶ HEAL, 2020, Health Impact Assessment Briefing